DO ARBITRAGE FREE PRICES COME FROM UTILITY MAXIMIZATION?

Pietro Siorpaes

University of Vienna, Austria

Warsaw, June 2013

ARBITRAGE FREE PRICES

ALWAYS BUY IT DEPENDS

ALWAYS SELL

MARKET

ARBITRAGE FREE PRICES

ALWAYS BUY IT DEPENDS ALWAYS SELL

MARKET + AGENT

MARGINAL PRICES

BUY DO NOTHING SELL

MARGINAL PRICES

Agent

- u(x,q) maximal expected utility achievable
- x initial cash wealth
- q initial number of cont. claims

Marginal Prices

Intuitive definition

p is a marginal price for the agent with utility *u* and initial endowment (x, q) if his optimal demand of cont. claims at price *p* is zero.

MARGINAL PRICES

Agent

- u(x,q) maximal expected utility
- *x* cash wealth
- *q* number of cont. claims

Marginal Prices

Definition of $\mathcal{MP}(x, q; u)$

p is a marginal price at (x, q) relative to u if

 $u(x - pq', q + q') \le u(x, q)$ for all $q' \in \mathbb{R}^n$,

• Are marginal prices always arbitrage free ?

 $\mathcal{MP}(x,q;u) \subseteq \mathcal{AFP}$?

• Are marginal prices always arbitrage free ?

 $\mathcal{MP}(x,q;u) \subseteq \mathcal{AFP}$?

KARATZAS AND KOU (1996)

Are marginal prices always arbitrage free ?

```
\mathcal{MP}(x,q;u) \subseteq \mathcal{AFP} ?
```

KARATZAS AND KOU (1996)

O all arbitrage free prices come from utility maximization?

$$\bigcup \mathcal{MP}(x,q;u) \supseteq \mathcal{AFP} \quad ?$$

Union over what ?

Liquid frictionless market

- Bank account, with no interest
- Stocks: semimartingale *S*, admitting ELMMs
- (Almost) no constraints on strategy H

Liquid frictionless market

- Bank account, with no interest
- Stocks: semimartingale *S*, admitting ELMMs
- (Almost) no constraints on strategy H

Illiquid contingent claims

• $f(\omega) \in \mathbb{R}^n$ random payoff • $|f| \le c + \int_0^T H dS$ for some c, H• qf is not replicable for any $q \ne 0$ Liquid frictionless market

- Bank account, with no interest
- Stocks: semimartingale *S*, admitting ELMMs
- (Almost) no constraints on strategy H

Illiquid contingent claims

• $f(\omega) \in \mathbb{R}^n$ random payoff • $|f| \leq c + \int_0^T H dS$ for some c, H• qf is not replicable for any $q \neq 0$

Definition of \mathcal{AFP}

p is an arbitrage free price if $q'(f-p) + \int_0^T H dS \ge 0$ implies $q'(f-p) + \int_0^T H dS = 0$

UTILITY, MARGINAL PRICES

Agent

Maximal expected utility

$$u(x,q) := \sup_{H} \mathbb{E}[U(x+qf+\int_{0}^{T}HdS)]$$

• $U: (0, \infty) \to \mathbb{R}$ Utility: strictly concave, increasing, differentiable, Inada conditions

UTILITY, MARGINAL PRICES

Agent

Maximal expected utility

$$u(x,q) := \sup_{H} \mathbb{E}[U(x+qf+\int_{0}^{T}HdS)]$$

• $U: (0, \infty) \to \mathbb{R}$ Utility: strictly concave, increasing, differentiable, Inada conditions

Definition of $\mathcal{MP}(x, q; u)$

p is a marginal price at (x, q) relative to u if

$$u(x - pq', q + q') \le u(x, q)$$
 for all $q' \in \mathbb{R}^n$,

UTILITY, MARGINAL PRICES

Agent

Maximal expected utility

$$u(x,q) := \sup_{H} \mathbb{E}[U(x+qf+\int_{0}^{T} HdS)]$$

• $U: (0, \infty) \to \mathbb{R}$ Utility: strictly concave, increasing, differentiable, Inada conditions

Definition of $\mathcal{MP}(x, q; u)$

p is a marginal price at (x, q) relative to u if

$$u(x - pq', q + q') \le u(x, q)$$
 for all $q' \in \mathbb{R}^n$,

i.e. if (x, q) maximizes u over $\{(x - pq', q + q') : q' \in \mathbb{R}^n\} =: A$

Setting as in HUGONNIER AND KRAMKOV (2004)

MAIN THEOREM

Theorem

If
$$\sup_{x}(u(x,0) - xy) < \infty$$
 for all $y > 0$ then
$$\bigcup_{(x,q) \in \{u > -\infty\}} \mathcal{MP}(x,q;u) = \mathcal{AFP}$$

MAIN THEOREM

Theorem

If
$$\sup_{x}(u(x,0) - xy) < \infty$$
 for all $y > 0$ then
$$\bigcup_{(x,q) \in \{u > -\infty\}} \mathcal{MP}(x,q;u) = \mathcal{AFP}$$

- u(x,0) = u(x) as in Kramkov and Schachermayer (1999)
- Any *U* is enough to reconstruct \mathcal{AFP}
- Enough to consider small (x, q)
- Always we need (x, q) close to $\partial \{u > -\infty\}$
- In general we need $(x, q) \in \partial \{u > -\infty\}$

BOUNDARY POINTS ARE ILL-BEHAVED

Technical reasons

The multi-function
$$\mathcal{MP}$$
 : $int\{u > -\infty\} \rightarrow \mathbb{R}^n$
 $(x,q) \mapsto \mathcal{MP}(x,q;u)$

has compact, non-empty values and is upper-hemicontinuous ...NONE of this is true on the boundary !

BOUNDARY POINTS ARE ILL-BEHAVED

Technical reasons

$$\begin{array}{rcl} \text{The multi-function } \mathcal{MP}: \textit{int}\{u>-\infty\} & \to & \mathbb{R}^n \\ & (x,q) & \mapsto & \mathcal{MP}(x,q;u) \end{array}$$

has compact, non-empty values and is upper-hemicontinuous ...NONE of this is true on the boundary !

Need to extend HUGONNIER AND KRAMKOV (2004)

BOUNDARY POINTS ARE ILL-BEHAVED

Technical reasons

The multi-function
$$\mathcal{MP}$$
 : $int\{u > -\infty\} \rightarrow \mathbb{R}^n$
 $(x,q) \mapsto \mathcal{MP}(x,q;u)$

has compact, non-empty values and is upper-hemicontinuous ...NONE of this is true on the boundary !

Need to extend HUGONNIER AND KRAMKOV (2004)

Economic reasons

Theorem

If $p_0 \in \mathcal{P}(x, q)$ for some non-zero $(x, q) \in \partial \{u > -\infty\}$, then $\exists p \in \mathbb{R}^n \setminus \mathcal{AFP}$ such that $[p_0, p) \subseteq \mathcal{MP}(x, q; u)$

DOMAIN OF UTILITY u

New geometric characterization of \mathcal{AFP}

The following are equivalent:

- $p \in AFP$
- B is bounded
- ③ If $(x', q') \in cl\{u > -\infty\}$ satisfies x' + q'p = 0 then (x', q') = (0, 0)
- There exists an ELMM \mathbb{Q} such that $p = \mathbb{E}^{\mathbb{Q}}[f]$ etc.

New geometric characterization of \mathcal{AFP}

The following are equivalent:

- $p \in AFP$
- B is bounded
- ③ If $(x', q') \in cl\{u > -\infty\}$ satisfies x' + q'p = 0 then (x', q') = (0, 0)

• There exists an ELMM \mathbb{Q} such that $p = \mathbb{E}^{\mathbb{Q}}[f]$ etc.

PROOF OF $\mathcal{MP}(u) \subseteq \mathcal{AFP}$: Fix $p \notin \mathcal{AFP}$, $(x, q) \in \{u > -\infty\}$, let's show $p \notin \mathcal{MP}(x, q; u)$.

New geometric characterization of \mathcal{AFP}

The following are equivalent:

•
$$p \in \mathcal{AFP}$$

- B is bounded
- ③ If $(x', q') \in cl\{u > -\infty\}$ satisfies x' + q'p = 0 then (x', q') = (0, 0)

• There exists an ELMM \mathbb{Q} such that $p = \mathbb{E}^{\mathbb{Q}}[f]$ etc.

PROOF OF $\mathcal{MP}(u) \subseteq \mathcal{AFP}$: Fix $p \notin \mathcal{AFP}$, $(x, q) \in \{u > -\infty\}$, let's show $p \notin \mathcal{MP}(x, q; u)$. Since u(x, q) < u(x + x', q + q') holds for any non-zero $(x', q') \in cl\{u > -\infty\}$,

New geometric characterization of \mathcal{AFP}

The following are equivalent:

•
$$p \in \mathcal{AFP}$$

- B is bounded
- ③ If $(x', q') \in cl\{u > -\infty\}$ satisfies x' + q'p = 0 then (x', q') = (0, 0)

• There exists an ELMM \mathbb{Q} such that $p = \mathbb{E}^{\mathbb{Q}}[f]$ etc.

PROOF OF $\mathcal{MP}(u) \subseteq \mathcal{AFP}$: Fix $p \notin \mathcal{AFP}$, $(x, q) \in \{u > -\infty\}$, let's show $p \notin \mathcal{MP}(x, q; u)$. Since u(x, q) < u(x + x', q + q') holds for any non-zero $(x', q') \in cl\{u > -\infty\}$, taking (x', q') = (-q'p, q') as in item (4) gives u(x, q) < u(x - q'p, q + q')

P ARBITRAGE FREE PRICE

We need that \exists maximizer of *u* of *B*. Since *B* is compact, it's enough to show that

u is upper semi-continuous

We need that \exists maximizer of *u* of *B*. Since *B* is compact, it's enough to show that

u is upper semi-continuous

SKETCH OF PROOF

• Take $(x^k, q^k) \rightarrow (x, q), H^k$ s.t. $W^k := x^k + q^k f + (H^k \cdot S)_T$ satisfies $\mathbb{E}[U(W^k)] = u(x_k, q_k) \rightarrow s \in \mathbb{R}$

We need that \exists maximizer of *u* of *B*. Since *B* is compact, it's enough to show that

u is upper semi-continuous

SKETCH OF PROOF

- Take $(x^k, q^k) \rightarrow (x, q), H^k$ s.t. $W^k := x^k + q^k f + (H^k \cdot S)_T$ satisfies $\mathbb{E}[U(W^k)] = u(x_k, q_k) \rightarrow s \in \mathbb{R}$
- By Kolmos' lemma ∃V^k ∈ conv{(Wⁿ)_{n≥k}} which converges a.s. to some r.v. V
- Use duality theory to show that $\exists H$ s.t. $V \leq W := x + qf + (H \cdot S)_T$, so $\mathbb{E}[U(V)] \leq u(x,q)$

We need that \exists maximizer of *u* of *B*. Since *B* is compact, it's enough to show that

u is upper semi-continuous

SKETCH OF PROOF

- Take $(x^k, q^k) \rightarrow (x, q), H^k$ s.t. $W^k := x^k + q^k f + (H^k \cdot S)_T$ satisfies $\mathbb{E}[U(W^k)] = u(x_k, q_k) \rightarrow s \in \mathbb{R}$
- By Kolmos' lemma ∃V^k ∈ conv{(Wⁿ)_{n≥k}} which converges a.s. to some r.v. V
- Use duality theory to show that $\exists H$ s.t. $V \leq W := x + qf + (H \cdot S)_T$, so $\mathbb{E}[U(V)] \leq u(x,q)$
- By Jensen inequality $\mathbb{E}[U(V^k)] \ge inf_{n \ge k} \mathbb{E}[U(W^n)]$
- Show that $U(V^k)^+$ is uniformly integrable, so by Fatou $\overline{\lim}_k \mathbb{E}[U(V^k)] \le \mathbb{E}[U(V)]$, so $\overline{\lim}_k u(x_k, q_k) \le u(x, q)$

Arbitrage free prices come from utility maximization

$$\bigcup_{(x,q)\in\{u>-\infty\}}\mathcal{MP}(x,q;u)=\mathcal{AFP}$$

In general we need also $(x, q) \in \partial \{u > -\infty\}$

The corresponding $p_0 \in \mathcal{MP}(x,q)$ are quirky

 $\exists p \in \mathbb{R}^n \setminus \mathcal{AFP}$ such that $[p_0, p) \subseteq \mathcal{MP}(x, q)$